
. v/ " \(i» t

Proceedings of the 1992 IFIP
International Conference on

Upper Layer Protocols, Architectures and
Applications

ULPAA1 92

May 27-29,1992
Vancouver, Canada

CEKTM FOR IYIEGRATED COMPUTER SYSTEMS RESEARCH • C •!• C • S • R •
T H E U N I V E R S I T Y O F B R i T I S H C O L U M B I A

O S I W A R E

Object-Oriented Design for Distributed Systems and OSI Standards

Gregor v. Bochmann, Stephane Poirier and Pierre Mondain-Monval

Departement I.R.O, Universite de Montreal, C.P. 6128, Succursale A,
Montreal, Quebec, Canada, H3C 3J7.

Keywords

Object-oriented specification, directory service, Open Systems Interworking, entity-
relationship model, object-oriented databases, distributed systems design, design
methodologies, formal description techniques, specification languages.

Abstract

For an object-oriented design methodology to be effective, it is important to provide
methods and tools for validating the design specification before going into the
implementation phase. The paper proposes a design methodology and a related object-
oriented specification language which allows the validation of specifications through
simulated execution, or through automatic exhaustive simulation for a certain subset of the
language. The paper also discusses the relation of this design methodology and language to
other design methodologies which are in wide use, such as the entity-relationship model for
databases, the ASN.l notation used for Open Systems Interconnection (OSI)
communication protocols, as well as methodologies used in the standardization committees
for the elaboration and description of various kinds of distributed systems standards. It is
shown how these different approaches can be integrated into a single methodology and
language, using the OSI Directory System as an example.

250

1. Introduction

The goal of a design methodology is to provide simple, efficient means to structure
the process leading from an informal application description to a precise design
specification. Using an object-oriented approach, one applies the principle of aggregating
data items together with operations performed on them, calling the whole an "object". An
application can be seen as a composition of such objects. One of the advantages of this
approach is the information hiding principle, which is naturally supported. Another
advantage is the fact that at the informal level of description, the concept of an "object" is
very common; therefore a design and implementation framework directly supporting this
concept leads to more readable specifications. A third important property, usually
associated with the object-oriented approach, is "inheritance" which, at the specification
level, should mean the inheritance of properties. Properties defined for some more general
type of objects will be inherited by objects belonging to a more specialized type of object,
sometimes called "subclass".

Although these principles of object-oriented design are well known, it still remains
a very informal, intuitive process based on human expertise. Within a joint industry-
university research project we have developed a specific methodology [Mond90], and a
related object-oriented specification language, MONDEL [Boch89] which have been
applied to a number of examples (e.g. [Boch90i]). Although our main interest has been in
the area of distributed system management and communication protocols, we believe that
our approach is general enough to be applied to many other areas.

For applications relating to communications and other standards, it is important to
include, within the system design cycle, the integration of the relevant standards. The
amount of information available in these documents is generally huge, and they are mostly
written in natural language. In the area of OSI, the standardization groups have developed a
certain number of specification practices, guidelines, and more or less formal description
techniques and languages (for an overview, see for instance [Boch 90c]). It is important
that a design methodology used in this area be able to naturally integrate these existing
specification elements into the overall system description.

The purpose of this paper is to demonstrate these issues by explaining our
experience with a particular example, namely the OSI directory system [X.500]. In Section
2, we give an overview of our design methodology and the MONDEL language. Section 3
describes the application of this methodology and language to the description of the OSI
directory system. In Section 4, we discuss how our design methodology and specification
language relate to various other description techniques used for the directory standard and
in other areas. Based on these relationships, it is possible to derive certain parts of the
design specification from the existing partially formalized documents.

2. Object-oriented design methodology and specification language

2.1. Design methodology

Our design methodology [Boch90d] acknowledges the need to relate object-oriented
concepts to the more classical, function oriented, design practices [Ward89, Bois89]. Thus
our methodology uses some Entity-Relationship concepts [Chen 76, ISO89] already widely
applied to software design. In the area of distributed systems, it is also important that the
design methodology relates to existing documentation, such as standardization documents
or other existing requirements. This issues are further discussed in Section 4.

Current object-oriented design methods usually comprise a certain number of
design steps. Though not all practitioners agree on the number and the denomination of

251

these steps, but all come up with approximately the same philosophy [Booc86, Meye87,
Bail88, Bail89, Jalo89, Bail90].We identified the following four major steps, which can be
iterated until a satisfactory design is obtained:

1. A preliminary step first consists of the identification of the general problem area, of
the specific aspects to be handled, and also on the aim of the expected design; this
step is an informal one, but it should lead the designer to separate the different
aspects included in the application, and also to precisely define the intended
purposes of the model to be elaborated.

2. Step 1: The first step of the design development consists of the identification of the
key components of the so-called application domain; this step takes as input any
information describing the functionalities to be provided, and should produce as a
result a set of so-called entities, together with relationships among them, which can
be easily mapped onto object-oriented languages constructs, as discussed in Section
4.1.

3. Step 2: A subsequent step is concerned with the allocation of the functions as
operations offered by objects identified in the previous step; some functions will
also uncover some new objects which must be integrated in the application domain.

4. Step 3: The last step is concerned with the definition of the behaviors of the
objects; these behaviors consider the possible sequences of operations calls as well
as the necessary processing associated with each operation; complex objects can be
specified as smaller "applications" i.e., the entire design process can be applied to
each individual object as it is applied to the global application.

2.2. The specification language MONDEL

We have developed an object-oriented specification language called MONDEL
[Boch89] which supports the development methodology mentioned above. In many
respects, MONDEL resembles other existing object-oriented languages. It has, however,
certain properties which make it particularly suitable for describing real-time distributed
systems, such as the example described later.

In MONDEL, everything is an object. Therefore the entities, their attributes and the
relationships identified during Step 1 of the methodology are represented in MONDEL as
types, as further discussed in Section 4.1. The multiple inheritance scheme of MONDEL
supports in a direct manner the "is-a" relations identified in the design.

In contrast to many other object-oriented languages, MONDEL distinguishes
between persistent and non-persistent objects. Persistent objects are like entries in a data
base; they remain present until they are explicitly deleted, and they can be interrogated by
database-oriented statements which identify the object instances in the database which
belong to a given class and have specified properties. Entities and relationships identified
during Step 1 are usually represented as persistent objects.

Concerning the design information related to Step 2 of the methodology, MONDEL
has the well-known concept of operations (sometimes called "methods") which are defined
for a given object class, and are provided by each instance of that class to be called by other
object instances. In order to call an operation, the calling object has to know the identity of
the called object. The type checking feature of MONDEL is able to detect many design
errors related to the parameters of the called operations and the returned results.

In contrast to many object-oriented languages, communication between objects is
synchronous, that is, a calling object is blocked until the called object executes a RETURN
statement, which may include the delivery of a result. Synchronous communication is
better suited for specifications at higher level of abstraction, since cross-over of messages
at interfaces can be largely avoided [Boch 90a].

252

Concerning Step 3 of the methodology, MONDEL provides a number of statements
to express the order in which the operations can be accepted by an object, or for specifying
the actions to be performed when an operation call is accepted by the object. The concept of
an ATOMIC operation is introduced which represents a "transaction" in the sense of
databases, that is, it represents a set of actions which are either all performed without
interference from other "transactions", or undone if an exception condition is encountered.
The language has exception handling similar to ADA. The actions of different objects are
usually performed in parallel; it is also possible to define several parallel activities within a
single object.

The statements of the language have the flavor of a high-level programming
language, except for the database-oriented statements mentioned above. However, it is also
possible to write assertional specifications by defining input and output assertions for
operations, or by defining INVARIANT assertions which must be satisfied at the end each
"transaction".

MONDEL has a formally defined semantics [Barb 90a] which is the basis for a
development environment which includes a compiler and simulator which can be used to
execute MONDEL specifications. In addition, a verification tool automatically checks for
certain design errors, such as deadlocks for not too large specifications (for more details,
see [Boch 90, Will 90, Barb 90b]).

3. An example: The OSI directory system

3.1. Overview of the OSI directory system

The OSI directory system (DS) [X.500] is a collection of cooperating systems
which provide information and manage a distributed database, the co-called Directory
Information Base (DIB). The information contained in the database is used to facilitate the
communication with and about objects in a distributed environment, such as Application
Entities, people, terminals, distribution lists etc.. Although the user of the directory is
unaware of it, the DIB is distributed over many sites called Directory Service Agents
(DSA). The directory is accessed through user processes, called Directory User Agents
(DUA), as shown in Figure 1.

The service of the directory is provided through a set of operation calls, which are
grouped into three service classes: The Read class allows the interrogation of the
information contained in a particular entry of the DIB, the Search class permits the
exploration of the DIB, and the Modify class permits the modification of the data in the
DIB.

The DIB is logically structured in the form of a tree (Directory Information Tree,
DIT). Each entry has a Relatively Distinguished Name (RDN) which is unique among all
its siblings. For every entry in the tree a unique name, called Distinguished Name (DN) is
defined as the concatenation of all the RDN encountered from the root of the DIT to the
entry in question. For example Figure 2 shows a DIT distributed over 3 DSA. The DN of
the entry identified by a triangle is C=W O=DEF OU=K (where "C", "O" and "OU" stand
for "country", "organization" and "organizational unit", respectively).

3.2. Preliminary step: Problem definition

This preliminary step is necessary to guide the designer during the following steps,
and to focus on the relevant aspects.The results of this preliminary step are more of a set of
guidelines for the following steps than formal results.

253

During this first step, the intended functionalities of the application to be designed
should be stated. Usually, not all components of a complex system need to be specified;
also the level of details to be considered for a given component may vary. Often a high-
level of abstraction and genericity is desirable: the specifications must stay valid for a wide
variety of configurations and withstand changes to be introduced over time.

The application to be specified may concern an existing domain. For instance,
network management applications are usually defined for existing networks. Therefore, the
application domain already exist and the new functions must cope, at the appropriate
abstraction level, with existing components. Generally, the design of an application starts
with a (possibly empty) given domain, and new components are to be added. Such an
approach promotes re-use of specifications since it does not isolate a given application form
existing and future ones.

Access Point

Figure 1: Subsystems in the OSI directory system [X.500]

Root

DSA1

Figure 2: Hypothetical DIT [X.518, Figure 5]

Finally, the intended purpose of the specification must be considered. The
specification may be used for various purposes:

254

• design validation (internal consistency and relation to requirements);
• documentation for some hardware and/or software architecture;
• simulation, for user training, for future system development analysis, or as a

prototype before building a larger scale system;
• performance analysis;
• (automated) software production.

In the case of the directory system, a relatively detailed system design was already
given in the form of the OSI standard [X.500]. The purpose of our Directory Project [Poir
91] was to study how easy this design could be represented using the MONDEL language
and the object-oriented design methodology discussed here. We were therefore also
concerned with the translation of certain formalized notations used in the OSI standard into
MONDEL, as discussed in Section 4. The second purpose was to obtain an executable
MONDEL specification of the directory which could be used for the validation of the
design or as a prototype.

3.3. Design Step 1: Domain definition

The domain definition step is intended to capture the relevant elements of the
existing or foreseen domain, together with their essential characteristics. The result should
be a description of the domain as a set of entities together with the various relationships
among them that are relevant to the functionalities and purpose of the model. This step can
be refined in the following sub-steps:

1. The first one is to identify entities of interest, together with their specific
characteristics.

2. A second sub-step is to identify the various relationships existing among these
entities. They usually cover different aspects of the application to specify:
• specialization of object types, represented by the inheritance relationship, often

written "is-a"; different entities in the domain may share some common
characteristics which can be specified as a general class (or type), called
superclass, which may be inherited by more specialized subclasses

• structuring aspect, represented by the aggregation relationship, often stated as
"is-part-of" or "is-made-of' relationships

• functional aspects: many identified relationships stem from the functionalities
the designer intends to specify

In the case of the OSI directory system, we can identify the entities and relations
shown in Figure 3, using a common graphic notation. A DSA is composed of a single
connection handler (called Bind Handler) and DIBFragment, and a varying number of
Server objects. A new Server object is created for each connection which is established
with the DSA by a DUA or another DSA. Different specializations of server objects exist
which provide the Read, Search, and Modify operations, respectively. Similarly, a DUA
consists of a single connection handler and a user connection end point (UCEP) for each
connection established with a DSA.

During the domain definition, object attributes may be identified. These attributes
may represent specific characteristics of an object, such as the attribute "maxServer" of the
type DSA which represents the maximum number of "Server" objects that can be supported
at any time. Trying to bind to a DSA once its maximum is exceeded would result in an error
condition.

255

JDUABin

Bind
_

Unbind

dHandlei UCEP

X^/UA-SA \X|
\Connection/ jf ^ ^t

/

~TT yi

InfiARinriHnnrllfiil J^

Notation :

relationship

"is part of" relationship

specialization
Figure 3: Entity Relationship Diagram of the Directory System

The graphic notation used in Figure 3 and the following is not part of our design
methodology. However, we think that graphic representations of designs are important for
making the designs understandable. The notation of Figure 3, or any other suitable graphic
notation may be used in relation with our design methodology.

3.4. Design Step 2: Functions definition

The function allocation step intends to distribute the required functionalities among
the identified entities. There are several important aspects to this process:

1. Since entities are represented as objects, the functions they have to perform are
defined as operations they must offer. An operation is formally defined as a
procedure or a function; i.e., with some input and output parameters, which
must be objects too. These parameters must be defined if possible.

2. Having identified the operations, the designer must allocate them to some
objects.
• An operation sometimes might be convenient to allocate it to a new

"support" entity introduced for the purpose of allocating the operation;
• operations and parameters types should be specified with respect to the

entities offering them; also, when operations are inherited, operations names
and parameters types may have to be refined.

256

3. The next point is to consider the support entities introduced during the allocation
process and to integrate them within the application domain.

In the case of the OSI directory system, the following operations can be identified
and associated with the objects shown in Figure 3. The DUA and DSA BindHandlers
accept the operations Bind and Unbind. The Bind operation invoked on a DSA, to which a
connection is to be established, includes as parameter the kind of service desired. It returns
as result the identification of a connection with a Server object which has been created by
the destination DSA and which will provide the service over the created connection. The
operation Unbind can be used to eliminate a remote Server object and the corresponding
connection.

Figure 4 shows a possible scenario of operation executions involving the
establishment of a Read connection by a user with a Server of a DSA. This is done by first
invoking a "Bind" on the object "DUABindHandlerl" (1). This creates an object "UCEP"
and invokes the operation "Bind" on its "HomeDSA", which is the object
"DSABindHandlerl". This will cause an object "Readerl" of type "Reader" to be created
and its reference returned to "DUABindHandlerl" which may now complete the relation
"UA-SA". Note: This scenario is similar to the connection establishment scenario used in
[Mond90b] for the description of the OSI Reference Model. Now the user has the
possibility of invoking a "Read" operation (3) which will be treated at "DSA1" by the
"Readerl" object (4). Assuming that the operation cannot be satisfied at this DSA, a
reference to another DSA will be found and permit to invoke a "Bind" operation on
"DSABindHandler2" (5) to create a "ChainedReader" object Once the reference to this new
object is returned, the Read operation is forwarded to it (6).

DUA

/ \l I

[DirectoryBind " "I

[PirectoryUnbind |

Br
,

l i
UCEP

r 1
2 , 1 DSABindHandlerl

^TDirectoryBind |

| DirectoryUnbind |

-i-<lJA-SA>^-

i

Readerl

'-* ~~ -VjRead

lOomnarfi

SA1

h

[Abandon
^- = operation call ' • —

5
t

7

^ !•

•

[DSABindHandler2
^DirectoryBind |

xx | DirectoryUnbind

^> O/*"*O/A .^^^^^

~ >>|R

DSA2

1

ii
Chained
Reader

sad

— 1 [Compare

(Abandon

Figure 4: Object Instances in the Directory System

It is important to note that, in contrast to Figure 3 which shows the classes of
objects in the directory system, Figure 4 shows instances of such objects and instances of
their relations.

257

The Server objects accept the Read, Search or Modify operations, depending on
their specialization. The corresponding operations of a chained Server are the same, except
that the parameter and result types contain additional information concerning the chaining of
the requests.

3.5. Design Step 3: Behaviors definition

This last step consists of the definition of the behaviors of the various entities for
the allocated operations. This process mainly depends on the knowledge and expertise of
the designer in the specific field. However, some general principles can be applied:

1. For each object, it is first necessary to define the accepted sequences of operations;
a general skeleton can be defined for that purpose.

2. For each operation offered by a given object, there are two possibilities:
• the behavior for that operation is simple enough so it can be easily specified

with the language statements; the necessary processing is described in terms of
state changes, attributes modifications, and interactions with other objects;

• the behavior is complex, and a refinement process can be applied to it; the
technique is to consider the processing to be performed as a restricted
application which can be specified by applying the design process from the
Preliminary step to Step 3, until all components are fully specified.

In the case of the OSI directory system, we have to describe the behavior of the
DUA and DSA connection handler and the different specializations of the Server class.
Each operations of the Server classes is executed sequentially. The first phase of the
execution consist of finding a target object in the DIT from which the evaluation will
proceed. This search for the target object may traverse more than one DSA and is done by
the NameResolution operation. It may involve the forwarding of the request to several
remote DSA's in parallel. Once the target object is found we then move to the evaluation
phase. The NameResolution procedure returns either a reference to some entry contained in
the DIBFragment, if the target is found locally, or a reference to another DSA, if the entry
is not found locally. We therefore must introduce the concept of a DSA reference which
leads to an interation of the design steps, and a more detailed design as discussed in the
following subsection.

3.6. Additional object types in relation with the system behavior

The DIT structure is represented by the Node entity type and a recursive relation
Parent, as shown in Figure 6. The DIBFragment of the DSA contains one or more so-
called naming contexts which is a subtree of the DIT structure. For example DSA2 in
Figure 2 has three Naming contexts which are identified by their respective context prefixes
C=WW, C=VV and C=WW OABC OU=I. A node of the subtree is either the root node,
a data node or a specific subordinate reference node. A data or root node is actual data in
the DIB. A reference node contains what is called a subordinate reference, which is a
reference to a DSA which contains the naming context equivalent to the DN of the current
node. In Figure 2 each edge which leads from one DSA to another DSA represents a
subordinate reference.

For the execution of the NameResolution procedure in the distributed context, we
need to find the naming context whose prefix most closely matches the DN of the entry we
are looking for. This is done by the internal procedure "FindNamingContext" shown in
Figure 6. Similarly, the procedure "FindCrossRef" finds the closest match among the
available cross references. Once we have found a matching naming context we must then

258

search the nodes of the subtree for an entry which will satisfy the query or for a
subordinate reference. This is done recursively by the operation "NodeSearch" associated
with each Node of the DIT (see Figure 6).

DIBFragment
NameResolution

[FindNamingContext |

FindCrossRef

l̂ode

(RON)

| NodeSearch | •̂ ^ Parent^

RootNode

ContextPrefix)

Figure 6: Information Held in a DSA

4. Discussion of various description formalisms

For applications, such as the directory system discussed in this paper, where many
standards and other documents must be considered during the system design, it is
important to find a common description formalism which is suitable to express all relevant
design issues, which is close to the formalism used in the standard and other documents,
and which is formal enough to allow computer-aided design tools. We have tried to make
MONDEL compatible with several notations used in the context of OSI standardization and
other areas, such as explained in the following subsections (see [Boch90a] for further
details).

259

4.1. The entity-relational model and object-oriented specifications

We discuss in this subsection how the concepts of the entity-relationship (ER)
approach [Chen 76, ODP] relates to the object-oriented approach, and how these concepts
can be represented using the MONDEL specification language. It is assumed that the reader
is familiar with the ER approach.

4.1.1. Classes, objects and inheritance

Like object-oriented languages, the ER approach makes the distinction between
classes of objects, called types in MONDEL, and objects which are the instances of such
types. However, the object-oriented approach has the notion of inheritance, which in the
area of specifications, we consider in the sense of subtyping [Amer90, Boch89b]. This
notion corresponds to what is sometimes called the "is-a" relationship. It is important to
distinguish this relation between types from the relationships between object instances,
which are the usual relations considered in the ER approach.

In the directory system discussed above, the "Reader" inherits from the "Server"
type; the UA-SA is an example of a relationship; To express the relation between
types, MONDEL has two constructs corresponding to multiple inheritance and non-
deterministic choice, respectively. For instance, the definition

type S = A and B endtype S
means that the class S inherits all properties of A and of B; it is therefore a specialization of
both. The definition

type G = choice A or B entype G
means that an instance of type G is either of type A or of type B. This construct
corresponds to the discriminate union of types, as found in many programming languages.

4.1.2. Modelling an "entity" and its attributes

MONDEL distinguishes between three basic classes of objects: actors, persistent,
and passive objects. Actors typically represent application programs, users, or system
interfaces; persistent objects correspond to instants of entities and relations, which are
involved in transactions and for which a persistent copy is retained until the current
transaction successfully terminates; passive objects, finally, include the predefined objects
of integers, strings, etc. as well as common data structures and other user-defined objects.

Each MONDEL object has a certain number of fixed acquaintances (usually called
"attributes" in MONDEL). Their value does not change during the entire lifetime of the
object. It seems natural to model an ER entity type as a persistent MONDEL type where the
entity attributes are modelled as inactive acquaintances. In the case that the entity attribute
value may change, an acquaintance of type VAR [T] may be used which means that the
acquaintance is a variable, to which new values of type T may be assigned during system
evolution. For example, the following definition

type RootNode = DataNode
contextPrefix: contextPrefix

endtype RootNode
describes the entity "RootNode" of Figure 6. "contextPrefix" is its specific attribute, while
it also inherits the attributes "Entry" and "RDN" from its superclasses.

260

4.1.3. Modelling relationships using the "database approach"

A relationship between object instances can be most directly be modelled in
MONDEL as an object type which has an acquaintance for each role of the relation. For
instance, the definition

type UA-SA = persistent with
ucep: UCEP
server: Server

endtype UA-SA
describes a relationship between the types "UCEP" and "Server" of Figure 3

This approach of modelling relationships has the following properties:

(1) Referential integrity (i): An instance of a relationship can not be created without the
existence of the related entities.

(2) Referential integrity (ii): If one of the related entities is deleted, the corresponding
instance(s) of a relationship is (are) also deleted.

(3) Dynamic relationship: The creation and deletion of instances of a relationship do
not affect the existence of the related entities.

(4) Independence: The relationship and the related entities are specified as separate
types.

(5) Specialization and relationship attributes: A basic relationship (as exemplified
above) may be refined by adding attributes or other pertinent information to the
definition of the relation type. For example:

It is possible to specify further properties by defining a subset of the acquaintances
to form a key, or by adding an invariant condition which must be satisfied during the
creation of each occurrence of the type. An example is shown in Section 4.1.5 below.

4.1.4. Modelling relationships using the "data structure approach"

In the context of high-level programming languages, relationships may be
represented using various data structures. MONDEL provides certain predefined structures,
such as VAR, SET, BAG, and SEQUENCE, which may be used for this purpose.
However, the symmetry between the different roles of the relationship is lost in these
representations.

For example, the first relationship "is part of" in Figure 6 could be represented by
an acquaintance (of the DIB Fragment) which is of type SET [CrossRef]. With this
approach, the aspects (2), (4) and (5) of Section 4.1.3 are lost. In the case that at most one
"CrossRef exists for each instance of DIBFragment, the acquaintance may be of type VAR
[], instead of a SET [], which simplifies its use and implementation; the value NIL can be
used to indicate the absense of a related "CrossRef. This representation is the same as for
a variable entity attribute.

Inversely, if the "is part of relationship is fixed for each component, the
relationship may be represented by a fixed acquaintance of the component. For example,
the above relationship could be represented by an acquaintance (of the "CrossRef entity)
which is of type "DIBFragment". In MONDEL, this representation also implies referential
integrity, that is, if a "DIBFragment" is deleted then all "CrossRef's related to it will also
be deleted.

261

4.1.5. Modelling aggregation relationships

An aggregation relationship, such as "an entity instance of type AType is composed
of entities of type BType", is a particular case of a functional relation from BType to
AType, and can be modelled as explained above. For example, the relation that a Part may
be (recursively) composed of several subparts may be described as

type Node = persistent with
superior : Node OPT; {or "superior: VAR Node ;" }

endtype Node
The superior acquaintance assumes the value NIL if the Node instance is the root node. We
may want to force this condition by the use of the MONDEL invariant clause,

type RootNode = DataNode with
contextPrefix: DistinguishedName
invariant

superior = nil
endtype RootNode

4.2. Standard data structure definitions in ASN.l and Remote Operations

ASN.l is a notation which allows the definition of data types , similar to the data
type definitions available in programming languages such as Pascal or ADA. The notation
includes a number of predefined types such as integers, reals, booleans, bit strings etc ... It
also allows the definition of composed types , such as groups of elements (called
SEQUENCE, corresponding to the Pascal RECORD), groups of elements of the same type
(called SEQUENCE OF), a list of alternative types (called CHOICE, corresponding to
Pascal's variant records).

The notation is used mainly to define protocol data units (PDU) parameters of OSI
Application layer protocols.. But it could also be used for describing the parameters of
service primitives and other data structures. The systematic translation from ASN.l to data
structures in specification languages, such as Estelle and LOTOS, or implementation
languages, such a C (see for instance [Boch89c]) have been defined. A similar translation
can be defined into MONDEL, as discussed in more detail in [Boch 90e].

Various extensions to ASN.l have been developed within the OSI standardization
community for describing such issues as: (a) ports through which connections can be
established with other system components [X.407], (b) "Remote Operations" [ISO88]
which correspond to the well-known concept of remote procedure calls, and (c) classes of
object with inheritance relations [ISO89]. The latter notation supports concepts similar to
those discussed here (see [Boch90a] for a more detailed comparison). In contrast to the
other notations, it is not used for the description of the OSI directory standard.

The "remote operations" can be modelled naturally in MONDEL in the form of
operation calls. In MONDEL, as in any object-oriented language, all communication
between objects proceeds through the call of operations which are associated with an
object, which must be known to the object that executes the call. In MONDEL, the calling
object has to wait for the return of the operation, which may include the result of the
operation, or may occur immediately after the acceptance of the operation by the called
object. This allows the modelling, in MONDEL, of the synchronous and asynchronous
communication foreseen for "remote operations" (see [Boch90a] for more details).

262

4.3. The description of object behavior

For the description of the behavior of operations, one may use algorithmic
specifications based on a high-level programming language (an approach taken for
MONDEL) or based graphic notations, such as Nassy-Shneiderman diagrams. In an
alternate approach, the specifier defines input and output assertions for the operations.
These approaches are sufficient in the case of "sequential" objects, that is, for objects that
accept one operation call after another, in an arbitrary order.

In the context of distributed systems, however, the order of execution of different
operations is often of prime importance. In order to specify the allowed sequences of
operation executions, there are a number of approaches, varying between algorithmic
specifications (e.g. LOTOS [Loto 89] or MONDEL) defining directly the possible
execution orders, and assertional methods imposing constraints on the allowed execution
sequences and their parameters (e.g. [Hoff88]).

A finite state machine (FSM) model is often used for the specification of ordering
constraints for communication protocols and other applications, however, it usually only
provides for a simplified model of the specified system. This model is directly supported
by certain description techniques (e.g. Estelle [Este 89] and SDL [SDL 87]), and can also
be translated in a straightforward manner into an algorithmic form. One translation scheme
foresees one procedure per state; it models the FSM in a direct manner. Another translation
scheme tries to obtain an algorithmic description which follows, as much as possible, the
style of structured programming [Boch 87g]. More details are given in [Boch 90a], and an
example for the Directory system is discussed in [Boch 90e].

5. Concluding discussion

We have presented in this paper an object-oriented design and formal specification
of the OSI Directory System. This specification was developed using an object-oriented
design methodology and related specification language, called MONDEL. Since the OSI
Directory standard includes already most of the design choices included in our
specification, the main interest of this work is to demonstrate how various different design
paradigms and description techniques can be integrated into an object-oriented approach
and supported by a single object-oriented specification language.

The Directory specification in MONDEL discussed in this paper has been validated
through execution in the exsting MONDEL simulator [Will 90]. It has also been the basis
for an implementation in C++ following a systematic translation approach from MONDEL
into C++, as described in [Nade 92].

The design of a distributed application, such as the directory, involves different
paradigms and techniques addressing different aspects of the design. Summarizing the
discussion of Sections 3 and 4, we identify the following major aspects:

(a) The identification of entity types and relationships within the application domain, as an
early phase within the design process. This is related closely to the entity-relationship
model for databases, and some description standards and design methodologies for
distributed systems [ODP]. The integration of these concepts into an object-oriented
paradigm was discussed in Section 4.1.
(b) Specialization of object classes, a concept largely developed within object-oriented
languages and directly supported in this context.

263

(c) The description of operations that may be invoked on objects, and of data structures that
may be used as parameters or result types. This relates to the ASN.l notation used in the
OSI standardization context and corresponding notations used in many programming
languages.
(d) The description of the behavior of objects, which should determine the effect and
results of operations and any constraints on the order and/or parameter values of operation
invokations. This relates to various description paradigms, such as finite state machines (or
extensions, such as SDL or Estelle), structured programming notations and flowcharts
(such as Nassy-Sheiderman), or assertional methods using input/output assertions. This
aspect is the most difficult one for any system description.

The integration of these different aspects into a single design methodology,
supported by a suitable specification language, and associated with suitable tools for the
validatin of design specifications, the development of implementations from the design, and
the generation and management of appropriate test cases, is clearly a desirable goal.
However, it is not clear how best to develop an overall system/application development
environment which makes the development process more efficient and reliable. We think
that the here described example of the OSI Directory System demonstrates that the first part
of the goal, namely the integration of existing design paradigms and description techniques
into a single object-oriented methodology and specification language, is feasable.

Acknowledgements
The here described methodology and specification language was developed within a

joint research project on "Object-oriented databases: application modelling and speciifcation
for telecommunications network management" by Bell-Northern-Research and the
Computer Research Institute of Montreal (CRIM). The authors thank all members of this
research group for many fruitful discussions. The work on the Directory System was
supported by the IDACOM-NSERC-CWARC Industrial Research Chair on
Communication Protocols.

6. References

[Amer90] P. America, A Behavioral Approach to subtyping in object-oriented programming languages,
Philips Journal of Research, Vol. 44, Nos 2/3, pp. 365-383, 1990.

[Bail88] S. Bailin, An object-oriented specification method for ADA, in ACM Proceedings of the Fifth
Washington Ada Symposium, June 1988.

[Bail89] S. Bailin, An object-oriented requirements specification method, CACM, Vol. 32, N. 5, May 89.
[Bail90] S. Bailin, Remarks on object-oriented requirements specification, 1990.
[Barb90a] M. Barbeau, G. v. Bochmann Formal semantics ofMONDEL, Progress Report Document N. 11

for CRJM/BNR project, June 1990.
[Barb90b] M. Barbeau, G. v. Bochmann Formal Verification of Object Oriented Specification in

MONDEL, Progress Report Document N. 12 for CRJM/BNR project, June 1990.
[Boch87] G. v. Bochmann, Usage of protocols development tools: the results of a survey, Invited Paper,

7th IMP Symposium on Protocol Specification, Verification, and Testing, Zurich, May 1987.
[Boch89] G. v. Bochmann, M. Barbeau, A. Bean, M. Erradi,L. Lecomte, CRIM/BNR Project—The

specification Language MONDEL Progress Report Document N. 2 for CRJM/BNR project, April 89.
[Boch89b] G. v. Bochmann, Inheritance for objects with concurrency , University de Montreal publication

#687a, March 1989.
[Boch89c] G. v. Bochmann, Michel Deslauriers COMBINING ASN.l support with the Lotos language,

Universit6 de Montr6al publication #684, Mai 1989.
[Boch 90] G. v. Bochmann, M. Barbeau, M. J5rradi, L. Ixcomte, P. Mondain-Monval and N. Williams,

Mondel: An Object-Oriented Specification Language, Publication departementale #748, Departement
IRQ, Universit6 de Montr6al, November 90.

264

[Boch90a] G. v. Bochmann, S. Poirier, P. Mondain-Monval, M. Barbeau, System specification with
MONDEL and relation with other formalisms, Progress Report Document N. 13 for CRIM/BNR
project, June 1990.

[Boch90b] G. v. Bochmann, Specifications of a simplified Transport protocol using different formal
description techniques, to be published in Computer Network and ISDN Systems.

[Boch90c] G.v. Bochmann, Protocol specifications for OSI, Comp. Network & ISDN Systems, April 90.
[Boch90d] P. Mondain-Monval, G. v. Bochmann, An object-oriented software design methodology,

Progress Report Document N. 7 for CRIM/BNR project, June 1990.
[Boch 90e] G.v.Bochmann, S.Poirier, PMondain-Monval, Object-oriented design for distributed systems:

The directory service example, Techn. Report, 1990.
[Boch87g] G. v. Bochmann and J. P. Verjus, Some comments on, transition-oriented" vs. "structured"

specification of distributed algorithms and protocols", IEEE Trans, on SE Vol SE-13, No 4, April
1987, pp. 501-505.

[Boch90i] L. Lecomte, P. Mondain-Monval, G. v. Bochmann, Un modele oriente objet pour le systeme de
transmission NT FD-565, Progress Report Document N. 8 for CRIM/BNR project, June 1990.

[Bois89] H. Bois, Une methode de developpement de logiciels fondee sur le concept d'objet et exploitant le
langage ADA, Universite Paul Sabatier, Toulouse, France, October 1989.

[Booc86] G. Booch, Object-oriented development, IEEE Transactions on Software Eng., February 1986.
[Card88b] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, G. Nelson, Modula 3 Report,

D.E.C., 1988
[Chen76] P. P. Chen, The entity-Relationship Model - Toward a Unified View of Data", ACM Trans, on

Database Systems, 1, 1 (March 1976), pp. 9-36
[Este89] ISO, IS9074 (1989), Estelle: A formal description technique based on an extended state transition

model, 1989
[Hoff88] D. Hoffman, R Snodgrass, Trace specifications: Methodology and models , IEEE Tr. SE 14, No.9

(Sept. 1988), pp.1243-1252.
[ISO87] DIS 8824 Specification of Abstract Syntax Notation One (ASN.l), 1987.
[ISO88] DIS 9072-1 Remote Operations, Part 1: Model, Notation, and Service Definition, 1988.
[ISO89] DIS 9595 Common Management Information Service Definition, 1989.
[Jalo89] P. Jalotte, Functional refinement and nested objects for object-oriented design, IEEE Transactions

on Software Engineering, Vol. 15, N. 3, March 1989.
[Loto89] ISO, 750, IS8807 (1989), LOTOS: a formal description technique, Based on the Temporal

Ordering of Observational Behavior., 1989
[Meye87] B. Meyer, Reusability: the case for object-oriented design, TF.F.R Software, March 1987.
[Mond90b] P. Mondain-Monval, Object-oriented Model for the OSI Reference Model Universitd de

Montreal, January 1990.Submitted to IFIP Symposium on Protocol Specification, Testing and
Verification, 1990.

[Nade 92] R. Nadeau, MSc thesis, Universit6 de Montreal, 1992.
[OOP] Working Document on Topic 6.1 - Modeling techniques and their use in ODP, ISO/IEC

JTC1/SC21 N 3196, December 1988.
[Poir91] S. Poirier, Evaluation du langage de specification MONDEL a la description de protocoles de

communication, Masters thesis Universit6 de Montreal, 1991
[SDL87] CCITT SG XI, Recommendation Z.100,1987
[T1M189] Committee Tl-Telecommunications Standards Contribution, Modelling guidelines, February 89.
[Ward89] P.T. Ward, How to integrate Object orientation with structured analysis and design, IEEE

Software, march 1989.
[W11190] N. Williams, G. v. Bochmann Description technique d'un simulateur pour le langage MONDEL,

Progress Report Document N. 10 for CRIM/BNR project, June 1990.
[X.407] CCITT, ISO 8505-4, Message Handling Systems Abstract Service Definition Conventions, 1988
[X.500] CCITT, ISO 9594-1 The Directory - Overview of concepts, Models and Services, 1988.
[X.501] CCITT, ISO 9594-2 The Directory - Models, 1988.
[X.511] CCITT, ISO 9594-3 The Directory - Abstract Service Definition,1988.
[X.518] CCITT, ISO 9594-4 The Directory - Procedures for Distributed Operation, 1988.

265

